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Abstract— This paper proposes a method to capture 
keypresses and their velocity on a piano keyboard using a depth 
camera. Previous vision-based research generally does not capture 
velocity information along with keypress events.  

In the proposed method, the depth image captured by a Kinect 
v2 camera had a bilateral filter applied. The keyboard was 
registered manually by applying a perspective transform to 
generate a top-down view onto which key bounding boxes were 
overlaid. A vertically-dominant correlation kernel was used to 
filter noise this keyboard frame while minimising blur key edges 
in the horizontal direction. A difference image was generated 
based on an initial frame with no pressed keys or hands present. A 
threshold was applied to this difference image to isolate pixels 
above the keyboard’s initial position such as hands. Hand 
detection involved applying opening and dilation operations to this 
frame. This approximate hand location frame was subtracted 
from individual key rectangles, which were then used as masks to 
average the difference image on a key-by-key basis to obtain an 
instantaneous depth for each key. A rolling average was applied 
and tracked, enabling calculation of velocity as each key surpassed 
the point of sound, entering a pressed state. 

A successful linear relationship was obtained between the 
calculated keypress velocity and the baseline of measured peak 
audio amplitude for each press. Tested white and black keys 
yielded a sound ratio ranging from 0.78 to 0.94 mm s-1 dB-1. This 
sound ratio was fitted to keypress data with high coefficient of 
determination values ranging from 0.81 to 0.92. 

Keywords—performance capture; hand detection; velocity 
calculation, keypress detection 

I.  INTRODUCTION  
Piano performances are highly dynamic and are imbued 

with the performer’s individual style and musical interpretation. 
This fact, when combined with the dynamic notation of the 
composer, means that different notes will be played at different 
volumes by the performer. These variations can be large (for 
example where the performer is reproducing a sudden emphasis 
or sforzando notated by the composer) or subtle (such as slight 
leans or voicing adjustments made by the performer).  

To thoroughly capture a piano performance, the dynamic 
properties of each keypress must be recorded. There exist two 

major methods of recording performances in such a way: MIDI 
capture and audio recording. Generally speaking, MIDI capture 
requires an electronic keyboard. Keypresses are recorded as a 
digital event stream [1]; the volume of each keypress is detected 
by physical sensors in each key and included in the stream. 
Audio recording involves capturing the keyboard output after 
sound synthesis, or the use of microphones to capture acoustic 
instruments. 

Compared to audio recording, MIDI capture has several 
notable advantages. As it is a raw event stream, MIDI can be 
directly interpreted by production or synthesis software. This 
has a wide range of applications, including automatic music 
transcription (AMT), instrument remapping, acoustic 
remapping, technique analysis and entertainment. Compared to 
MIDI, use of audio recording in such software involves 
algorithmic interpretation to extract notes from the captured 
waveform. This process can be convoluted and imprecise, 
especially in complex performances [2].  

Due to the requirement for an electronic keyboard, MIDI 
capture is seldom used for recording piano concerts at a 
professional level. The proposed method seeks to overcome the 
electronic keyboard requirement by using a vision-based 
approach to capture keypress events. These events must include 
volume information, even on acoustic or non-powered 
instruments. 

 
Figure 1: Potential applications for the proposed method include non-

intrusive performance capture of acoustic instruments, such as using a 
downwards-facing depth camera suspended above the piano [3]. 

 

mailto:ajn75@uclive.ac.nz
mailto:richard.green@canterbury.ac.nz


II. BACKGROUND 

A. Previous Keypress Detection Systems 
In [4], Akbari develops a method of automatically 

transcribing sheet music based on an RGB camera feed of a 
piano keyboard during a performance. Akbari’s 
implementation, known as claVision, attained a very high 
accuracy of 95% for a range of performed pieces and 
implemented detection of pressed ranges of keys. claVision 
utilises on a camera mounted off-axis above the keyboard. This 
positioning causes pressed keys to cause signature lines to 
appear in the image relative to an initial frame. The keypress 
detection process utilised in claVision is summarised in Figure 
2. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2: Summary of Akbari’s keypress detection method: (a) 
transformed view of keyboard resulting from prior keyboard registration, (b) 
negative binary difference image used to extract pressed white keys, (c) positive 
difference image used to extract pressed black keys, and (d) keypress detection 
result overlaid on original RGB camera frame [4]. 

 A large limitation of Akbari’s work is the absence of 
dynamic capture. The use of a camera with depth recording 
capabilities should help overcome this limitation. 

For keyboard recognition and key press detection, Akbari 
built on the work of Suteparuk [5] shown in Figure 3. A 
limitation of this prior report is greatly decreased accuracy for 
complicated pieces of music. This is due to Akbari’s use of an 
off-axis camera position; the difference images generated using 
Suteparuk’s top-down mount contained much less contrast. As 
with Akbari’s work, Suteparuk did not address the capture of 
dynamics, focusing more closely on keyboard registration and 
binary keypress detection.

  
 

 
Figure 3: Key press detection by Suteparuk [5].  

Work has also been carried out in detecting virtual 
keypresses on a hand-drawn paper keyboard through an RGB 
camera. Stenfert Kroese [6] obtained success rates of up to 90% 
for one finger on such a keyboard. There are significant 
limitations of the virtual keyboard approach, including an 
inherent lack of dynamic capture and a lack of application to 
real keyboards – important for production and performance 
analysis applications. 

B. Hardware Keypress Detection Systems 
In 2003, Moog introduced the since-discontinued PianoBar 

[7], a device which is physically fitted to the piano as shown in 
Figure 4. It used individual sensors to measure the depth of each 
key. Key press data including velocity was captured as a MIDI 
stream via an included control box. The device sat slightly 
above the keys and as a result did not impact the feel of the 
piano. The Moog PianoBar was accurate and received a good 
deal of professional use. However, the device was cumbersome 
in shape and size. It was also expensive, selling for over 
1000USD. The vision-based system implemented in this 
research aims to be a step towards a significantly cheaper and 
more portable solution than the Moog PianoBar. 

 
Figure 4: Moog PianoBar MIDI converter [7]. 

In 2015, Steinway & Sons introduced the Spirio piano. 
Solenoids built into the piano itself are capable of measuring 
velocity and replicating performances [8]. The built-in nature 
of this hardware within a high-end grand piano means the Spirio 
is extremely expensive and cumbersome.  

C. Velocty Detection Methods 
Various researched methods exist for calculating the 

velocity of objects in three dimensions. In optical flow tracking, 
a changing image is used to track relative motion between the 
observer and a scene. 

In [9], Alexander, Guo, Koppal, Gortler and Zickler present 
a “focal flow” sensor which combines principals of differential 
optical flow and depth from defocus. This solution provides 



benefits of depth from defocus, in that no object or camera 
motion is required, and removes the need for lens actuation by 
detecting focal changes on a differential basis. Depth values can 
be obtained for local areas of the frame, and additional 
information is taken from optical flow. Velocity is calculated 
using central differences. A limitation of the focal flow method 
is computational intensity: the generation of depth and velocity 
maps can take multiple seconds for a typical webcam frame. 
More significantly, a high-contrast texture must be present 
everywhere in the scene, as can be seen in the example of  
Figure 5. Such high-contrast textures are largely absent from 
keyboard key surfaces, and therefore some amount of 
intrusiveness (for example, adhering stickers to keys) would be 
required for using flow-based systems. 

 
Figure 5: Example of computed depth map using focal flow method [9]. 

D. Audio-Based Melody Extraction 
Audio-based methods of extracting keypress information 

are being actively researched and improved. While a different 
approach to overcoming the problem, audio-based melody 
extraction is worth considering in the context of this research as 
it provides a set of accuracy values against which the suitability 
of a vision-based system can be evaluated. 

An example of an audio-based note recognition system can 
be found in the form of Paiva’s melody detection algorithm, 
summarized in Figure 6. 

 
Figure 6: Paiva’s melody detection system overview [10]. 

In their early 2014 paper, Salamon, Gómez, Ellis and 
Richard presented a summary of 16 such melody extraction 
algorithms [11]. The algorithms tended to attain 70%-80% 
accuracy for extracting a single melody line. The proposed 
vision-based system in this research aims to overcome the 
limitation of single-line extraction by physically recording data 
for each individual key.  

E. Keypress Mechanics 
In an acoustic piano, the volume of a keypress is determined 

by the speed at which the hammer strikes the string. The 
hammer speed is, in turn, directly and solely determined by the 
speed at which the key is pressed. More specifically, the crucial 
key speed is the one that is present as the key crosses the “point 
of sound”. This point of sound is described by Mark, Gary and 
Miles [12] as the point at which the hammer is thrown toward 
the string. Beyond this point, downwards key velocity does not 
further affect the hammer’s travel speed. 

Palmer and Brown [13] investigated the relationship 
between this speed and the resulting sound amplitude of the 
associated string, determining the relationship as linear as 
shown in Figure 7.  

 
Figure 7: Peak amplitude as a function of hammer velocity [13]. 

III. METHOD 

A. Keyboard Registration 
The Kinect camera was fastened to a camera tripod and set 

to face downwards towards the keyboard at a height above the 
keyboard of around 500mm. A typical depth frame from the 
Kinect in this position is illustrated in Figure 8. This frame 
contains data for all visible pixels. 

 
Figure 8: Kinect depth frame with colour ramp applied. Relatively small 

variations in depth mean the keyboard is not clearly visible. 

A bilateral filter was applied to remove some noise from the 
source frames while reducing blurred edges. A threshold was 
then applied to the depth image to generate the result shown in 
Figure 9.  This was done to remove excessively far or near 
pixels, which may contribute to noise within the keyboard area. 
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Figure 9: Thresholded and bilaterally filtered frame (not normalised) with 

shallow and deep extremes removed. White pixels contain a depth value, and 
black pixels are 0. 

The keyboard was registered manually for the purposes of 
this research. A perspective transform was carried out to extract 
the keyboard. The points used for this transform were selected 
to simulate a top-down view of the keyboard and to correct the 
Kinect’s horizontally flipped image. To reduce noise in the 
resulting image, a long vertical kernel was then used as a 
correlation kernel in a filter operation. The vertically-dominant 
kernel shown in (1) was used to reduce the blurring of lines in 
the horizontal direction (this would blur keys together and make 
depth detection less accurate). 

 𝑘𝑘20𝑥𝑥1 = 1
20
�
1
1
⋮
1

� (1) 

The result of perspective transforming then filtering the 
image is shown in normalised form in Figure 10. 

 
Figure 10: Perspective transformed and filtered keyboard image.  

B. Difference Image 
The first keyboard image captured is used as a baseline for 

calculation of successive difference frames. This was calculated 
as in (2). 

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑓𝑓𝑐𝑐 (2) 

Therefore, pixels in the difference image have a value 
defined as depth in millimetres below the original pixel 
positions. It is important the first frame be an image of the 
keyboard with no hands or pressed keys present. This difference 
image is not absolute: in the difference image, hands above the 
keys will have negative pixel values and pixels on depressed 
keys will have positive values. 

C. Hand Detection 
For this research, precise hand locating or finger 

identification is not required. However, approximate hand 
detection is vital to reduce the presence of hands above keys 
affecting keypress tracking.  

Approximate hand detection was implemented in four 
stages. First, a threshold was carried out on the difference image 
to isolate pixels greater than 6mm above the keyboard. This 
included the hand and some noise. An opening operation was 
carried out with a circular structuring element of diameter 11 to 
remove noise in a similar fashion to Figure 11, with additional 
dilation to create a “finger region” with a margin of safety. This 
region was subtracted from key masks when calculating depth 
values to ensure fingers were not considered as negative 
keypresses. The entire process is shown in Figure 12. 

 
Figure 11: Effect of opening with 3x3 square structuring element [14]. 

 
(a) 

 
(b) 

 
 (c) 

Figure 12: Basic hand detection procedure, involving (a) thresholding for 
pixels over 6mm above original key position, (b) opening and additional 
dilation of threshold frame to remove noise and add margin of safety, and (c) 
subtraction of the dilated frame from the key mask used for averaging. 

D. Depth Detection 
To enable dynamic capture, each key has an associated 

depth value at each frame. This is in comparison to the binary 
nature of prior research, where each key is either pressed or not 
pressed. 

For each key, the keyboard depth frame is masked using the 
mask generated as in Figure 12c, based on the key’s bounding 
box and the approximate hand location frame. Within this mask, 
the mean of the frame’s depth pixels is calculated to give an 
instantaneous depth value for that key. For noise removal and 
tracking purposes, a rolling average of this depth value is stored 
for each key. A buffer size of n=5 was chosen for the rolling 
average as a good compromise between response time and noise 
removal. Examples of the calculated values are overlaid on the 
normalised difference image as shown in Figure 13 for three 
different cases. 



 
(a) 

 
(b) 

 
 (c) 

Figure 13: Obtained depth values in millimetres for the C4 key as outlined 
in red, with instantaneous depth in red and n=5 rolling average in blue, for (a) 
no key press, (b) key press, and (c) no key press with hand interference. Note: 
this image is normalised and shown as an absolute difference image. Numbers 
are derived from the non-normalised image. 

E. Velocity Calculation 
When a key reaches the point of sound, a keypress is 

registered. At this stage, the velocity is to be calculated and 
output. The point of sound was taken to be 4.5mm based on 
measurements on the upright Yamaha piano used for testing. 

To implement this, the rolling average calculated previously 
is continuously monitored. As soon as this smoothed depth 
value exceeds the point of sound, the key velocity is estimated 
using the reverse finite difference method applied to the rolling 
average values as shown in (3). 

 𝑣𝑣𝑑𝑑𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑑𝑑𝑝𝑝𝑝𝑝𝑡𝑡ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑑𝑑𝑝𝑝𝑝𝑝𝑡𝑡ℎ𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝
Δ𝑡𝑡𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑐𝑐

 (3) 

This calculation is demonstrated graphically in Figure 14. 
The first averaged depth value exceeding the point of sound is 
used in conjunction with the previous point to calculate a 
gradient value which is then associated with the keypress. This 
gradient is illustrated as a projected line based on the two key 
points. The steeper this line, the faster the keypress and the 
louder the note. 

 
Figure 14: Graphical representation of velocity calculation when point of 

sound is reached. 

The velocity is only calculated at the frame in which the key 
surpasses the point of sound. Before the next velocity is 
calculated, the key must be “lifted” by returning to within 
2.5mm of the original depth. 

IV. RESULTS 
Results were obtained on a test machine with an Intel i5-

6400 processor at 3.20 GHz, 16GB of DDR4 RAM at 
2133MHz and an NVIDIA GTX1060 graphics card with 6GB 
of GDDR5 VRAM. Code was written in C++ using Microsoft 
Visual Studio Community 2017 on Windows 10 Professional. 
OpenCV 3.2.0 [15] and Kinect Studio 2.0.1410 [16] were 
utilised. A Microsoft Kinect V2 camera was used, with a depth 
frame of resolution 512x424 and of frame rate 30 frames per 
second. 

Detected keypress velocities were compared to a baseline of 
relative peak amplitude level for each press, as captured by a 
stationary microphone in proximity to the piano and analysed 
using Adobe Audition CS6 as shown in Figure 15.  

 
Figure 15: Extraction of peak amplitude information from microphone 

audio recording as point of comparison. 
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Figure 16 shows the calculated and recorded data over time 
for a series of the keypresses increasing in volume from piano 
to forte. As expected, the increase in measured relative peak 
amplitude can be proportionally matched to calculated keypress 
velocity. 

 
Figure 16: Keypress sequence of C4 key, showing close correlation of 

calculated keypress velocity and measured peak amplitude over time. 

Repeated keypresses were made in a similar fashion for 
different white and black keys, with a peak amplitude and 
detected velocity recorded for each press. The results were 
organised by key and are shown in Figure 17 with best-fit lines. 
As expected from Palmer and Brown [13], linear best-fit lines 
were appropriate.  

 
Figure 17: Correlation between measured peak audio amplitude and 

calculated key velocity for repeated keypresses of two black notes and two 
white notes. 

The gradient of each key’s best-fit line was calculated and 
named sound ratio, m, in mm s-1 dB-1. The coefficient of 
determination, R2, was additionally obtained as an indication of 
the tightness of overall fit. Results are summarised in Table 1. 

TABLE 1 RESULTS SUMMARY 

Key Presses 
Note 

Correctly 
Detected 

Sound Ratio, m 
(mm s-1 dB-1) 

Coefficient of 
Determination, 

R2 

A3 
(White) 18 18 0.78 0.81 

C♯4 
(Black) 18 18 0.83 0.92 

E4 
(White) 19 19 0.94 0.85 

G♯4 
(Black) 14 14 0.81 0.84 

For all keypresses in testing, no false positive keypress was 
registered. Additionally, the note associated with each press 
was correctly detected each time. The program ran in real time, 
with an execution duration of around 21ms per frame.  

V. CONCLUSION 

A. Summary 
The proposed method was successful in obtaining a 

relationship between vision-derived keypress velocity 
calculations and an audio amplitude-based baseline: tested keys 
yielded a sound ratio ranging from 0.78 to 0.94 mm s-1 dB-1. 
This sound ratio was fitted to keypress data with high 
coefficient of determination values ranging from 0.81 to 0.92. 

B. Comparison with Prior Research 
The correct note detection rate of 100% with 0% false 

positives compares favourably with the 95% accuracy delivered 
by Akbari’s claVision [4], however it is important to note that 
the present research focused on velocity detection of individual 
keypresses rather than the accurate capture of complex 
performance as evaluated by Akbari. Nevertheless, the depth 
method of keypress detection certainly appears comparable in 
performance to the RGB methods used in claVision, while 
overcoming the limitation of absent velocity capture. 

Compared to Moog’s PianoBar [7] and Steinway’s Spirio 
[8], the proposed system managed to capture velocity data in an 
affordable and relatively portable package. While it is unlikely 
this vision-based system is as accurate as the PianoBar’s 
hardware approach, the system is able to run in real time and 
would therefore be able to facilitate instrument remapping with 
minimal latency, in a similar fashion to the PianoBar. 

C. Limitations of Research 
As with most vision-based approaches, this system has no 

way of detecting keypresses for keys which are obscured by 
hands. While hands are detected and removed from the key 
masks, significant hand coverage will cause unreliable readings 
and complete hand coverage will cause zero readings. 

The method proposed in this research uses a manually-
registered keyboard. This registration is a time-consuming 
process and requires entry of warp points into the program. 

The Kinect camera used for depth detection output depth 
frames at a rate of 30 frames per second. A camera with a higher 
frame rate would be likely to give higher accuracy, provided 
noise characteristics were comparable. 
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D. Future Research 
As a proof of concept, much of the testing for this research 

was focused on velocity calculations for single and repeated 
keypresses. The system is capable of registering any number of 
simultaneous keypresses and it would be valuable to research 
the versatility of the system in more realistic performances 
containing fast-paced melodic sections and broad harmonic 
chords. These situations may lead to effects such as significant 
hand coverage which are likely to occur in concert recording or 
technique analysis. 

For this research, the camera was placed nearly directly 
above the keyboard at the minimum useful distance from it, in 
an attempt to maximise the signal-to-noise ratio. Further 
research into the effects of camera angle and height on the 
captured data should be carried out. This would be particularly 
applicable in situations such as concert capture, where 
minimisation of intrusiveness is crucial, or public 
entertainment, where the threat of theft is to be minimised.  

It would be useful to carry out research into the integration 
of the velocity-detection system into an AMT workflow such as 
claVision, between automatic keyboard registration and 
transcription. Sheet music resulting from this process could be 
tagged with dynamics. 

The results of this research show slightly varying sound 
ratios and line intercept values for different keys. This is likely 
due to various sources of error as well as apparent volume 
differences for varying frequencies. Further data collection 
could be carried out for a wide range of keys. The resulting data 
may be useful as a calibration step for registering a particular 
keyboard’s sound ratio profile. 
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